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Basic Theory of Frequency Analysis 

Dynamic Signal Analysis (DSA) is an application area of Digital Signal Processing 

(DSP) technology. Compared to general data acquisition and time domain 

analysis, DSA focuses more on the dynamic and frequency aspects of signals such 

as frequency response, dynamic range, total harmonic distortion, phase match, 

and amplitude flatness. In recent years, time-domain data acquisition devices and 

DSA instruments have converged. More and more time domain instruments, 

such as oscilloscopes, can do frequency analysis while more and more dynamic 

signal analyzers can do long time data recording. 

Among the DSP applications used in Dynamic Signal Analysis, the most 

fundamental and popular is the Fast Fourier Transform (FFT) algorithm. The 

FFT transforms time domain signals into the frequency domain very efficiently. 

To use FFT-based measurements effectively, however, one must understand the 

fundamental issues and computations involved. This chapter describes some of 

the basic signal analysis computations, discusses the anti-aliasing and acquisition 

front end for FFT-based signal analysis, explains how to use windowing functions 

correctly, explains some spectrum computations, and shows FFT-based functions 

for some typical measurement examples. 

The Fourier Transform 

Jean Baptiste Joseph Fourier made his famous statement in the 19th century that 

all periodic signals can be represented as an infinite sum of sinusoidal functions. 

In other words, any periodic time domain signal 𝑥(𝑡)with period 𝑇 is equal to a 

sum of complex exponentials: 

𝑥(𝑡)        
    

 
     

      
 
    

This is called the Fourier Series. The complex exponentials    
   
 
  are the 

frequency components with amplitute values   . The frequencies are multiples of 

the fundamental frequency 
 

 
. The (infinite) set of these values *  ,   ,   , … + 
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is the frequency domain representation of the time domain signal 𝑥(𝑡). No 

information is lost in going from one domain to the other; in fact the signal 𝑥(𝑡) 

can be perfectly reconstructed from the set of   . 

This decomposition can be extended to non-periodic signals. As the period of the 

signal increases, the fundamental frequency decreases and the frequency 

components become more closely spaced. Taken to the infinite limit, this spacing 

becomes infinitesimal and the frequency domain representation becomes a 

continuous function  𝑋(𝑓) .  𝑋(𝑓)  is the Continuous Time Fourier 

Transform (CTFT) of 𝑥(𝑡), defined as 

𝑋(𝑓)   ∫ 𝑥(𝑡)         𝑡
 

  

 

In general, the Fourier Transform is defined for all frequencies from negative to 

positive infinity and is complex-valued. However, for real-valued time signals the 

frequency transform must be conjugate-symmetric about the zero frequency and 

the negative frequencies are therefore redundant. It is common, therefore, to 

consider only the positive frequencies. 

The Discrete Fourier Transform 

The CTFT, in general, does not have an analytic solution and must be solved 

numerically. To do this, the infinite integral must be replaced by a finite sum. 

The first step is to approximate the continuous time signal with a set of discrete 

values. This is the process of sampling, which takes ‘snapshots’ of the signal at 

evenly spaced points in time. This spacing is ∆𝑇 and its inverse, 
 

∆ 
, is the sample 

rate or number of sample points per second. This process generates a discrete 

form of the original time signal, 𝑥̂(𝑛), with 𝑥̂(1)  𝑥(𝑡 ), 𝑥̂(2)  𝑥(𝑡 ), etc., where 

𝑡  𝑛∆𝑇. 

According to Nyquist’s theorem, the original signal can be perfectly reconstructed 

from this sampled version as long as it does not contain any frequency 
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components greater than half the sample rate. If components above this Nyquist 

Limit are present in 𝑥(𝑡), they will become aliased in 𝑥̂(𝑛) and appear as new, 

lower-frequency components. If the sample rate is 𝑓 , and a frequency 𝑓  is 

present in 𝑥(𝑡) with 𝑓 >
  

 
, then 𝑥̂(𝑛) will contain the frequency 𝑓 −

  

 
. This is 

undesirable distortion in the sampled signal. 

To prevent this, a low-pass anti-aliasing filter is used. Ideally, this filter would 

pass, with no loss, all frequencies up to but excluding 
  

 
. Such a filter is impossible 

to realize in reality and, instead, the roll off occurs over finite bandwidth. Because 

of this, the maximum usable frequency in signal analyzers is actually less than 

half the sample rate. 

With a discretized signal, the Fourier Transform now involves an infinite sum 

over infinite time. Most users aren’t willing to wait this long for an analysis, so the 

signal must be broken into finite blocks of 𝑁 samples. Each block is transformed 

with the Discrete Fourier Transform (DFT): 

𝑋̂( )   ∑ 𝑥(𝑛)    
  
 
 

   

   

 

This transforms the discrete signal 𝑥̂(𝑛) over a period of 𝑁 samples into a discrete 

frequency domain representation 𝑋̂( ), where 𝑛 and   are integers. The 𝑁 time 

values become 𝑁 complex frequency values. 

𝑋̂( ) is defined for all k, but only has N unique values. This is possible because 

 𝑋̂( ), is periodic, meaning the values between −
 

 
 and 

 

 
 are repeated infinitely 

many times in the positive and negative direction.  𝑋̂ .
 

 
/ is the same as  𝑋̂ .−

 

 
/, 

and  𝑋̂(0) is the same as  𝑋̂(𝑁). Because of this, the DFT is sometimes described 

as being defined from −
 

 
 to 

 

 
− 1, but can also be defined from 0 to 𝑁 − 1. 
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For real-valued time signals, 𝑋̂( ) is conjugate-symmetric. This means that the 

real part of 𝑋̂( ) is equal to the real part of 𝑋̂(− ), and the imaginary part of 𝑋̂( ) 

is equal to the negative of the imaginary part of 𝑋̂(− ). The spectrum, then, is 

evenly split between the negative and positive frequencies, and both sides contain 

identical information. This gives rise to the one-sided DFT, which is defined for 

0 ≤  ≤
 

 
. 

Computing the DFT sum is computationally intensive, and computer scientists 

have developed a much more efficient algorithm called the Fast Fourier 

Transform (FFT). The FFT transforms each block of 𝑁  samples into 
 

 
 1 

complex-valued positive frequency lines, equivalent to the one-sided DFT. The 

most common FFT implementation is the Radix-2 DIF FFT algorithm, which 

requires that the block size 𝑁 be a power of 2 (𝑁  2 , where 𝑚 is an integer). 

DFT Frequency Range and Resolution 

The original Fourier Series decomposes an infinitely long time signal into 

infinitely long periodic functions. The DFT (and FFT, which are mathematically 

equivalent) attempts to decompose a finite discrete time signal of 𝑁 points into 

infinite periodic functions. However, a finite function cannot be formed from 

infinite functions. The DFT actually treats the 𝑁 points as one period of an infinite 

periodic signal.  

In other words, the DFT assumes a fictitious time signal where the original 𝑁 

points are repeated over and over, ad infinitum. This new signal has a period 

equal to the time length of those original 𝑁  points, or  
 

  
. Its fundamental 

frequency 
  

 
, which is the reciprocal of its period, is the lowest frequency present, 

and all other frequency components are multiples of this value. The highest 

frequency is the Nyquist frequency 
  

 
, limited by the sample rate 𝑓 . 
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In summary, the one-sided DFT takes N time samples and returns 
 

 
 

1frequency component amplitudes at  {0,
  

 
,
   

 
, … ,

  

 
}. The component at the zero 

frequency is just the arithmetic average of the time points.  

The frequency range of the transform is 
  

 
, determined by the sample rate in the 

time domain. The frequency resolution (spacing between the frequency lines) is 

  

 
 
 

 
, determined by the time length of the block. The sample rate — the time 

resolution —affects the frequency range; the time length of the block — the time 

range —affects the frequency resolution. Range in one domain controls the 

resolution in the other domain. 

Leakage 

The DFT works very well if all the frequency components present in the original 

time signal are multiples of the fundamental frequency of the N-point blocks. In 

this case, an integer number of cycles fit perfectly within one block (Figure 1, right 

side) and the input assumed by the DFT is an accurate representation of the 

original time signal. The frequencies actually present in the original signal exactly 

match the frequencies of the DFT components.  

In general, however, this won’t be the case and the signal won’t line up so nicely 

(Figure 1, left side). Each frequency component of the DFT no longer corresponds 

to a single, discrete frequency of the original signal, but instead represents a range 

of frequencies. This limits the resolution of the analysis and is a consequence of 

using only N points of the original time signal. 
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Figure 1. Relationship between actual input, block time record, and input 
assumed in FFT calculation 

The components of the DFT correspond to frequency lines of the FFT, and each 

line has the frequency response shown in Figure 2. 
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Figure 2 Response of FFT lines. 

In this response shape, there is one main lobe and many side lobes that extend 

through the entire frequency range. The response is highest at the center 

frequency and is zero at the center frequency of every other line. In between the 

other lines it is not zero, and this results in inaccurate measurement of these 

frequencies. Figure 3. FFT measurement of sine wave, centered on frequency line 

on the left shows the FFT display when measuring a sine wave with a frequency 

exactly matching the center frequency of an FFT line. It is displayed perfectly. 

Figure 3, right side shows the display when measuring a sine wave of a frequency 

between two frequency lines. Here, even though there is only one frequency 

present it appears to have a much wider bandwidth. This effect is called leakage 

and can make it impossible to distinguish two frequency components that are 

close together. 
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Figure 3. FFT measurement of sine wave, centered on frequency line (left) 
and not centered on a frequency line (right) 

In general, leakage will always occur and will limit the resolution of any frequency 

display. There are two exceptions: one has been described above where the 

fundamental frequencies of the block and of the time stream match; the other is 

when the entire time signal completely fits within a single block. This occurs when 

measuring transient signals that are zero at the start and end of the block. These 

are often called self-windowing functions. 

Windowing Functions and Scaling Factors 

Leakage can be reduced, and measurement precision increased, by the use of 

windowing functions. These functions are defined over one block, are positive, 

and are zero at the beginning and end of the block.  When the time signal blocks 

are multiplied by these functions before the FFT algorithm, the response shape of 

each frequency line is changed.  With the correct function, this shape can be 

improved allowing for increased frequency resolution or accuracy. Various 

windowing functions have been developed, and each has a different effect on the 

response shape and are best suited for different applications. These functions are 

discussed in detail in a later section. 
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Because the windowing function attenuates a portion of the original data, it has a 

scaling effect on the overall amplitude of the frequency components. To correct 

for this and maintain accuracy, an amplitude correction factor 𝐶  is used: 

𝐶  ∑𝑤(𝑛)

   

   

 

 

Amplitude and Spectrum 

The amplitude values given by the DFT are complex, meaning they have real and 

imaginary parts. They can be converted to a magnitude and phase angle; 

however, in most applications, the phase angle of one signal by itself is 

meaningless. 

The frequency component   of a signal block 𝑥(𝑛) is defined as 

𝑆 ( )  
2

C
 ∑  𝑤(𝑛)  

     
 

   

   

 

where 𝑤(𝑛) is the windowing function. n and k are integers, with 0 ≤ 𝑛 ≤ 𝑁 − 1 

and 0 <  <
 

 
− 1 (  is the frequency in cycles per block). C is the amplitude 

correction factor, described above. The factor of 2 is a correction required because 

this is a one-sided transform; a two-sided transform would have half the 

amplitude at the positive frequency and half at the negative frequency. There is an 

exception for   0 and   
 

 
, which, in the two-sided spectrum do not have a 

corresponding negative frequency component. For these frequencies, therefore, 

the one-sided spectrum is defined without the factor of 2:1 

                                                        
1 This is cumbersome, but is necessary, and forgetting these little details is a common source of bugs in DSP software. 
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𝑆 ( )  
1

C
 ∑  𝑤(𝑛)  

     
 

   

   

,   0 and   
𝑁

2
 

The real parts of 𝑆  correspond to cosine components and the imaginary parts to 

sine components (90° phase difference). To convert to magnitude and phase, the 

magnitude is given by 

‖𝑆 ( )‖  √𝑆  ( ) ⋅ 𝑆 ( ) 

and the phase by 

∠𝑆 ( )  tan
  
ℑ(𝑆 )

𝔎(𝑆 )
 

where   denotes the complex conjugate, 𝔎  denotes the real part, and ℑ  the 

imaginary part. 

The magnitudes of the frequency components are collectively called the 

Amplitude Spectrum. 

Power Spectrum 

In many applications, the quantity of interest is power, or rate of energy transfer, 

which is proportional to the squared magnitude of the frequency components. 

The squared magnitudes of all the DFT frequency lines are collectively referred to 

as the Power Spectrum, defined as: 

𝑆  ( )  
1

2
𝑆 
 ( ) ⋅ 𝑆 ( ) 

The power spectrum normalized to the width of the frequency lines is called the 

Power Spectral Density. This is the signal power per 1 Hz of bandwidth. 

Normalizing to the bandwidth makes the measurement it independent of the 

frequency resolution used in the analysis. It is the most common quantity used 

when measuring broad-spectrum random signals. 
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When measuring transient or short-duration signals, the quantity of interest is 

usually the total energy present in each frequency band. The total energy per 1Hz 

bandwidth is proportional to the Energy Spectral Density, equal to the power 

spectral density multiplied by the time duration of the block. Multiplying by time 

makes the measurement independent of the block time length. 

Cross Spectrum 

While the discussion up to this point has described the frequency analysis of one 

time signal, the Cross Spectrum characterizes the relationship between the 

spectra of two signals. For two signals 𝑥 and 𝑦, with frequency components 𝑆 and 

𝑆 , it is defined as: 

𝑆  ( )  𝑆 
 ( ) ⋅ 𝑆 ( ) 

It is the correlation between the frequency components of two related signals. 

While the Power Spectrum is real-valued, the Cross Spectrum is complex. This 

means that it also describes the phase alignment of the two signals.  

Frequency Response Function 

An important application of Dynamic Signal Analysis is characterizing the input-

output behavior of physical systems. This is the domain of network analysis. 

With linear systems, the output can be predicted from a known input if the 

Frequency Response Function of the system is known. The Frequency 

Response Function 𝐻(𝑓) relates the Fourier Transform of the input 𝑋(𝑓) to the 

Fourier Transform of the output 𝑌(𝑓) by the simple equation 

𝑌(𝑓)  𝐻(𝑓)𝑋(𝑓) 

The fact that 𝐻(𝑓) is independent of the input is what makes the system linear. 

The inputs and outputs can be force, acceleration, velocity, or any other physical 

quantity. With the DFT, the simplest definition of the frequency response 
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function is the ratio of the output spectrum to the input spectrum. However, the 

best way to calculate this that is resistant to noise uses the cross-power spectrum: 

𝐻(𝑓)  
𝑆  ( )

𝑆  ( )
 

Like the Cross-Power Spectrum, the Frequency Response Function is complex-

valued and has both magnitude an phase. The magnitude is the ratio of the output 

to input amplitude of each frequency, and the phase is the phase change between 

the output and input. 

When measuring the input-output behavior of a system, there is always noise 

present that obscures the output. An important measure is how much of the 

output is actually caused by the input. Another correlation measure called 

Coherence is defined as 

𝐶   
|𝑆  |

 

𝑆  𝑆  
 

The coherence is between 0 and 1, with 1 meaning the output is perfectly 

explained by the input. A coherence of 0 means the output and input are 

uncorrelated. 

 The FFT in the Real World 

The previous sections described the theory that makes frequency analysis of 

signals possible. This section describes the details of how frequency analysis, 

usually carried out by the FFT algorithm, is implemented for real signals. 

More on Data Windows 

Windowing functions, defined above, can help reduce leakage and increase the 

precision of the frequency measurement. These functions affect the response 
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shape of each frequency line. Figure 4 shows this shape for four common 

windowing functions.  

This response always has a main lobe, reaching the highest point in the center, 

and many side lobes that taper off in each direction. Ideally, a windowing function 

would produce a narrow main lobe and non-existent side lobes, but this is not 

possible. There is a trade-off between the width of the main lobe and height of the 

side lobes. The functions that give low side-lobe response have a very wide main 

lobe and vice-versa. Because of this, different functions are better suited for 

different analysis situations. 
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Figure 4. Spectral shape of common windowing functions. 

Types of Windows 

Each windowing function 𝑤( ) is defined over one block, −
 

 
<  ≤

 

 
, with the 

block centered on   0. The equations of the most common functions are given 

below. 

Uniform Window 
𝑤( )   1 

The uniform or rectangular window is just unity over the entire block interval, 

and is equivalent to not using a windowing function at all. 

Hann Window 

𝑤( )   0.5 − 0.5    (
2  

𝑁 − 1
) 

The Hann (or Hanning) windowing function is the most common because of its 

reasonable compromise between low side lobes and narrow main lobe. Figure 5 

shows the FFT display for the same sine wave as Error! Reference source not 

found. but using the Hann windowing function.  

Hamming Window 

𝑤( )   0.53 36 − 0.46164    (
2  

𝑁 − 1
) 

The Hann and Hamming windowing functions are in the family known as "raised 

cosine" windows and are named after Julius von Hann and Richard Hamming 

respectively. 
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Figure 5. FFT measurement of sine wave with Hann window. 

Blackman Window 

𝑤( )  0. 4 − 0.5    
2  

𝑁 − 1
   0.0    

4  

𝑁 − 1
           ,0, 𝑁 − 1- 

Flattop Window 

𝑤( )  1 −  1.93    
2  

𝑁 − 1
 1.29    

4  

𝑁 − 1
− 0.3     

6  

𝑁 − 1

 0.032    
   

𝑁 − 1
  

Kaiser Bessel Window 

𝑤( )  1.0 − 1.24    
2  

𝑁 − 1
 0.244    

4  

𝑁 − 1
 0.00305    

6  

𝑁 − 1
 

Force Window 
The force window is unity over some proportion of the block and zero over the 

rest. It is used when only part of the block contains useful information, as when 

measuring an excitation force with duration much shorter than the block length. 

Exponential Window 

 𝑤( )    
(
   ( )
   

)
 

The shape of the exponential window is that of a decaying exponential with a final 

value of 𝑅. 
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Window Characteristics 

Figure 4 shows four common windowing functions and the resulting response 

shape of the frequency lines. 

The width of the main lobe is often described by the half-power bandwidth, 

which is the distance between the points where the response is -3 dB below the 

center peak. Similarly, the quarter-power bandwidth uses the -6 dB points. The 

width is given here as number of frequency lines, where each line is separated by 

a frequency of 
  

 
. 

The ability to distinguish two closely spaced frequency components increases as 

the main lobe narrows. However, as the main lobe narrows the response of the 

side lobes increase. There is a trade-off between amplitude accuracy and spectral 

resolution. 

Side lobes occur on each side of the main lobe and are zero at the centers of other 

frequency lines. They are characterized by their peak response levels and roll-off 

rate. The side lobes affect the extent to which adjacent frequency components 

leak into the frequency lines. The side lobe response of a strong component can 

overpower the main lobe response of a nearby weak component. 

-6dB

Main lobe width

Peak side 

lobe level

Frequency

 

Figure 6.  Window frequency response showing main lobe and side lobes. 
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Uniform (none) 0.9 1.2 –13 
Hanning 1.4 2.0 –32 
Hamming 1.3 1.8 –43 
Blackman 1.6 2.3 –58 
Flattop 2.9 3.6 –44 

 

Choosing the Right Data Window 

When measuring self-windowed functions, no windowing is required (use the 

Uniform window). When measuring period signals, it is best if the block time 

length is equal to the period of the signals. 

If the goal of the analysis is to discriminate two or more sinusoids close together 

in the frequency domain, spectral resolution is very critical. For these 

applications, choose a data window with a narrow main lobe such as the Hanning 

window. 

Use the Flattop window when amplitude accuracy is critical. The function 

generates a wide flat main lobe that sacrifices frequency resolution for accurate 

representation of amplitude. 

For analyzing transient events such as impact and response signals, it is better not 

to use the windowing functions because they attenuate important information at 

the beginning of the sample block. Instead, use the Force and Exponential 

windows. A Force window is useful in analyzing shock stimuli because it removes 

stray signals at the end of the signal. The Exponential window is useful for 

analyzing transient response signals because it damps the end of the signal, 

ensuring that the signal fully decays by the end of the sample block. 

Amplitude Units and Scaling 

𝑆 ( ) can be thought of as a vector with both a magnitude and phase angle. When 

expressed as a magnitude, it can be scaled as a peak value, RMS value, or peak-to-

Window –3 dB Main Lobe 
Width (lines) 

–6 dB Main 
Lobe Width 

(lines) 

Maximum 
Side Lobe 
Level (dB) 
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peak value. When expressed as a squared magnitude, it can be scaled to represent 

the power spectrum, the power spectral density, or energy spectral density. 

Recall that 𝑆 ( ) given as magnitude values is the Amplitude Spectrum. With no 

scaling, it represents the peak amplitude values of the sinusoidal functions that 

make up the signal. The RMS, or Root-Mean-Square, values represent the level 

that a constant (or DC) signal would need to have to transfer the same power as 

the component sinusoid. It is the square root of the average square value, equal to 

√2 times the peak value. The peak-to-peak value is the difference between the 

highest and lowest values of the sinusoid, equal to twice the peak. 

In many measurement situations, the physical phenomena being observed 

involve transfers of energy. The rate of this energy transfer, which is defined as 

power, is usually proportional to the square of the measured quantities, such as 

voltage or velocity. Thus the squared magnitude values of the DFT, or the Power 

Spectrum, represents the signal power present in each frequency line. The section 

above on Power Spectrum describes the various ways it is scaled. 

Averaging 

In the steps described above, a sampled time signal was truncated into a block 𝑁 

samples long and multiplied with a windowing function. Then, the FFT algorithm 

was applied to the block resulting in N/2 complex-valued frequency lines. 

In a typical analysis scenario, a time stream is broken into a series of blocks and 

each undergoes the FFT process. The results from each block are then combined 

in some sort of averaging function, giving an overall picture of the signal in the 

frequency domain. An identical result is obtained if the blocks are averaged in the 

time domain, before the FFT is applied. Since both the FFT and the averaging 

functions are linear transforms, their order does not matter. 
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Linear Spectrum Averaging 

If the frequency amplitude values from each block are kept in their complex form 

and averaged, the result is a Linear Spectrum Average (also known as a 

Vector Average). The phase information in each block is preserved and 

frequency components in phase across blocks are reinforced while out of phase 

components are cancelled. 

The primary utility of Linear Averaging is for Time Synchronous Averaging. 

This is used when the blocks can be aligned with the period of a fixed signal 

known to be present in the time stream. The alignment of the blocks makes the 

signal have the same phase in every block, while the phase of noise varies 

randomly. As more blocks are averaged together, the noise is cancelled out and 

the in-phase signal is reinforced.  

Aligning the blocks in such a way requires a synchronous trigger to mark the 

period of the signal. Fortunately, this is usually available in measurement 

situations; for example, with rotating machinery a tachometer pulse that occurs 

once per revolution works very well. 

Power Spectrum Averaging 

If the power spectra of each block, which is in magnitude-squared rather than 

complex form, is averaged the result is a Power Spectrum Average. This 

destroys phase information, but often the phase isn’t meaningful anyway. The 

power spectrum average gives an estimate of the average power distribution 

across the frequency range. 

Fixed-Size Average, Exponential Average, Moving Average 

There are different ways to mathematically combine data from many blocks into 

an average, whether this data is complex frequency amplitudes (linear spectrum 

average) or power spectra (power spectrum average). 
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A fixed-size average (sometimes confusingly called linear averaging, which has 

nothing to do with linear spectrum averaging described above) takes a specified 

number of blocks 𝑀 and combines the numeric values in a regular arithmetic 

average: 

𝐺( )  
∑ 𝑆 ( ) 
   

𝑀
 

where 𝐺( ) is the average for frequency   and 𝑆 ( )is the frequency data for 

block 𝑚 (either complex amplitudes 𝑆  or power spectrum 𝑆  ).  

With fixed-size averaging there is one average every 𝑀 blocks. However, with a 

continuous time stream, it is preferable to have an average that is updated every 

block. This can be done with a moving average, where an arithmetic average is 

calculated for the past 𝑀 blocks every time a new block is acquired.  

A moving or fixed-size average required enough memory to hold 𝑀 blocks of data. 

A more efficient way to keep a running average is the exponential average. 

Here, only the current average is stored, and then updated when a new block is 

available by the equation: 

𝐺   ( )  𝛼𝑆 ( )  (1 − 𝛼)𝐺 ( ) 

𝐺 ( ) is the previous average which is updated to the new average 𝐺   ( ) with 

new spectrum data 𝑆 ( ).  1/𝛼 is the average number. 

Overlap Processing 

In the methods described above, one block is formed for every 𝑁 samples of time 

data, which has a time duration 𝑇   

  
. For a large block size or low sample rate, 

this can be a considerable amount of time which causes the frequency data to 

update very slowly. 
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 To decrease the time between updates, overlap processing can be used. While the 

block size remains 𝑁, a new block can be formed every 𝐷 samples, with 𝐷 < 𝑁. 

This means that, for each block, 𝐷 − 𝑁 samples from the previous block were re-

used in the new block. Often, this overlap is expressed as a percent, so an overlap 

ratio of 25% would mean that 𝐷 − 𝑁 is 25% of 𝑁. 

Overlap processing can form more signal blocks within a fixed total number of 

samples. When characterizing random signals, the accuracy of the frequency data 

depends, in general, on the total number of samples that go into the average and 

not the number of blocks. This means that, with a rectangular window, overlap 

processing will not give more accurate data for the same number of samples. 

However, with non-rectangular windowing functions some of the time domain 

data is attenuated, and overlapping blocks can help recover this.  Overlapping can 

improve accuracy up until around a ratio of 50%. 
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